Углеводы. Моно-, ди- и полисахариды, их характерные реакции.

Углеводы – это природные соединения, имеющие в подавляющем большинстве состав Cn(H2O)m. Их подразделяют на низкомолекулярные углеводы и продукты их поликонденсации.

Моносахариды – мономеры, из остатков которых состоят углеводы более сложного строения.

Олигосахариды – олигомеры, содержащие от 2 до 10 моносахаридных остатков.

Полисахариды – полимеры, включающие до нескольких тысяч моносахаридных звеньев.

Моносахариды.

Строение и классификация.

Моносахариды – это полигидроксикарбонильные соединения, в которых каждый атом углерода (кроме карбонильного) связан с группой ОН. Общая формула моносахаридов – Сn(H2O)n, где n =3-9.

По химическому строению различают:

-      альдозымоносахариды, содержащие альдегидную группу;

-      кетозымоносахариды, содержащие кетонную группу (как правило, в положении 2).

В зависимости от длины углеродной цепи моносахариды делятся на триозы, тетрозы, пентозы, гексозы и т.д. Обычно моносахариды классифицируют с учетом сразу двух этих признаков, например:

В природе встречаются производные моносахаридов, содержащие аминогруппу (аминосахара), карбоксильную группу (сиаловые кислоты, аскорбиновая кислота), а также атом Н вместо одной или нескольких групп ОН (дезоксисахара).

Стереоизомерия.

Все моносахариды (кроме дигидроксиацетона) содержат хиральные атомы углерода и имеют стереоизомеры. Простейшая альдоза, глицериновый альдегид, содержит один хиральный атом С и существует в виде двух оптических изомеров – D и L:

По мере увеличения длины цепи количество стереоизомеров у альдогексоз растет. В соответствии с числом хиральных центров существует 4 стереоизомерных альдотетрозы, 8 альдопентоз, 16 альдогексоз и т.д. В зависимости от конфигурации наиболее удаленного от карбонильной группы хирального атома С все моносахариды делят на два стереохимических ряда – D-моносахариды и L-моносахариды:

Подавляющее большинство природных моносахаридов принадлежит к D-ряду.

Родоначальником ряда D-альдоз является D-глицериновый альдегид. Остальные D-альдозы могут быть построены на основе D-глицеральдегида путем последовательной вставки фрагмента СНОН сразу после карбонильной группы. Стереоизомерные альдозы имеют тривиальные названия.

Уточним стереоизомерные отношения в ряду D-альдоз. Между собой D-альдозы с одинаковым числом атомов углерода (D-альдотетрозы, D-альдопентозы, D-альдогексозы и т.д.) являются диастереомерами. Среди них выделяют особый тип диастереомеров, который называют эпимерами.

Эпимеры – это диастереомеры, которые отличаются по конфигурации только одного хирального центра.

Например, D-рибоза и D-арабиноза являются эпимерами, так как отличаются конфигурацией только хирального атома углерода в положении 2. D-глюкоза имеет несколько эпимеров: D- маннозу по С-2, D-аллозу по С-3, D-галактозу по С-4, L-иодозу по С-5.

Каждая из D-альдоз имеет энантиомер, относящийся к L-ряду, который может быть построен аналогично D-ряду на основе L-глицеральдегида. Энантиомером D-глюкозы является L-глюкоза,  D-маннозыL-манноза и т.д.

Ряд D-кетоз может быть построен на основе простейшей кетозыдигидроксиацетона. Названия кетоз образуются из названий соответствующих альдоз путем введения суффикса «ул». Для некоторых кетоз утвердились тривиальные названия.

Дигидроксиацетон не содержит хирального атома С и не имеет стереоизомеров. Остальные кетозы являются хиральными соединениями.

В природе широко распространены гексозы (D-глюкоза, D-галактоза, D-манноза, D-фруктоза) и пентозы (D-рибоза, D-ксилоза, D-арабиноза). Среди производных моносахаридов наиболее распространенными являются аминосахара D-глюкозамин и D-галактозамин и дезоксисахар 2-дезокси-D-рибоза.

Цикло-оксо-таутомерия.

Известно, что альдегиды способны присоединять спирты с образованием полуацеталей:

Карбонильная и гидроксильная группы моносахаридов взаимодействуют внутримолекулярно с образованием циклического полуацеталя:

При этом возникает новый хиральный центр – бывший карбонильный, а теперь аномерный атом углерода. Наиболее устойчивы циклические полуацетали, содержащие шестичленный (пиранозный) или пятичленный (фуранозный) циклы. Они образуются при взаимодействии альдегидной группы с гидроксильной группой в положении 5 или 4 моносахарида соответственно. На рисунке представлена схема образования циклических форм D-глюкозы:

Возникновение нового хирального центра приводит к появлению 2-х стереоизомеров для каждой из циклической форм - a- и b-аномеров.

Аномеры – это эпимеры, которые различаются по конфигурации аномерного атома углерода.

У a-аномера конфигурация аномерного центра совпадает с конфигурацией концевого хирального атома С, у b-аномера она противоположна.

Циклические формы моносахаридов изображают с помощью формул Хеуорса. Молекулу представляют в виде плоского цикла, перпендикулярного плоскости рисунка. Заместители, находившиеся в формуле Фишера слева, располагают над плоскостью цикла, справа – под плоскостью. Для определения положения группы СН2ОН в формуле Фишера предварительно делают две перестановки.

В кристаллическом состоянии моносахариды находятся в одной из циклических форм. При растворении образуется равновесная смесь линейной и циклических форм. Их относительное содержание определяется термодинамической стабильностью. Циклические, особенно пиранозные формы, энергетически более выгодны для большинства моносахаридов. Например, в растворе D-глюкозы преобладает b-D-глюкопираноза:

Существование равновесия между линейной и циклическими формами моносахаридов получило название цикло-оксо-таутомерии.

Растворение кристаллического моносахарида сопровождается постепенным таутомерным превращением, которое заканчивается установлением таутомерного равновесия. Каждая таутомерная форма оптически активна и имеет свою величину удельного вращения. Поэтому за таутомерным превращением можно следить по изменению удельного вращения раствора, которое заканчивается с установлением равновесия. Явление изменения удельного вращения свежеприготовленного раствора моносахарида называют мутаротацией. Явление мутаротации – одно из доказательств существования цикло-оксо-таутомерии у моносахаридов.

Конформационное строение.

Основой строения пиранозных форм моносахаридов является тетрагидропиран, для которого возможны две энергетически неравноценные конформации кресла.

1С4                                                               4С1

Более стабильной является конформация с наименьшим числом объемистых заместителей в аксиальном положении. Для большинства D-альдогексоз это конформация 4С1, в которой группа CH2OH занимает экваториальное положение.

Рассмотрим конформационное строение b-D-глюкопиранозы. Более выгодной для этой формы D-глюкозы является конформация 4С1, в которой все заместители находятся в экваториальном положении.

У a-аномера гликозидный гидроксил в этой конформации будет занимать аксиальное положение. Поэтому в равновесной смеси таутомеров D-глюкозы преобладает b-аномер.

b-D-глюкопиранозаединственная D-гексоза с экваториальным положением всех заместителей. Как следствие этого, D-глюкоза - наиболее распространенный в природе моносахарид. Из всего семейства D-альдогексоз в природе встречаются только эпимеры D-глюкозы – D-галактоза и D-манноза, у которых число заместителей, занимающих аксиальное положение минимально.

На относительную устойчивость a- и b-форм моносахаридов кроме пространственных факторов влияют диполь-дипольные взаимодействия. Например, при замещении в молекуле D-глюкопиранозы полуацетального гидроксила на алкоксильную группу более выгодной становится a-аномерная форма, в которой группа OR занимает аксиальное положение. Стремление полярных групп при аномерном атоме углерода в пиранозном цикле занять аксиальное положение называют аномерным эффектом. Одно из возможных объяснений аномерного эффекта состоит в неблагоприятном диполь-дипольном взаимодействии между диполем атома кислорода цикла (с учетом ориентации его свободных электронных пар) и диполем экзоциклической связи С-X, которые в b-аномере параллельны, вследствие чего отталкивание между ними сильнее, чем в a-аномере.

Величина аномерного эфекта зависит от природы растворителя. Например, сольватация группы ОН в водных растворах приводит к ослаблению аномерного эффекта у свободных моносахаридов.

Химические свойства.

Химические свойства моносахаридов определяются наличием карбонильной группы (в ациклической форме), полуацетального гидроксила (в циклических формах) и спиртовых ОН групп.

Восстановление.

При восстановлении карбонильной группы альдоз образуются многоатомные спирты – глициты.

В лабораторных условиях для восcтановления используют NaBH4. В промышленности применяют каталитическое гидрирование. Таким образом получают заменители сахара: из D-глюкозы – сорбит (D-глюцит), из D-ксилозы – ксилит.

Восстановление альдоз приводит к «уравниванию» функциональных групп на концах цепи. В результате из некоторых альдоз (эритрозы, рибозы, ксилозы, аллозы, галактозы) образуются оптически неактивные мезо-соединения, например:

Разные альдозы при восстановлении могут дать один и тот же спирт.

Такая конфигурационная взаимосвязь между глицитами использовалась для установления стереохимической конфигурации моносахаридов.

При восстановлении кетоз из карбонильной группы возникает новый хиральный центр и образуется смесь неравных количеств диастереомерных спиртов (эпимеров по С-2).

Эта реакция доказывает, что D-фруктоза, D-глюкоза и D-манноза имеют одинаковые конфигурации хиральных центров С-2, С-3, и С-4.

Окисление.

Вследствие своей полифункциональности альдозы окисляются по-разному при действии различных окислителей. При этом может быть окислена карбонильная группа, оба конца углеродной цепи или расщеплена связь С-С.

Получение гликоновых кислот.

При мягком окислении альдоз, например, под действием бромной воды, затрагивается только карбонильная группа и образуются гликоновые кислоты, которые очень легко образуют пяти- и шестичленные лактоны.

Кетозы в этих условиях не окисляются и могут быть таким образом выделены из смесей с альдозами.

Альдозы и кетозы дают реакции, характерные только для соединений, содержащих альдегидную группу: они восстанавливают в щелочной среде катионы металлов Ag+ (Ag(NH3)2OHреактив Толенса) и Cu2+ (комплекс Cu2+ с тартрат-иономреактив Фелинга). При этом гликоновые кислоты образуются в незначительном количестве, так как в щелочной среде протекает деградация углеродного скелета моносахаридов.

Альдоза + Ag(NH3)2+ ® гликоновая кислота + Ag¯ + продукты деструктивного окисления

Альдоза +Cu2+ ® гликоновая кислота + Cu2O¯ + продукты деструктивного окисления

Сахара, способные восстанавливать реактивы Толенса и Фелинга, называют восстанавливающими. Кетозы проявляют восстанавливающие свойства за счет изомеризации в щелочной среде в альдозы, которые и взаимодействуют далее с окислителем. Процесс превращения кетозы в альдозу происходит в результате енолизации. Образующийся из кетозы енол является общим для нее и 2-х альдоз (эпимеров по С-2). Так, в слабощелочном растворе в равновесии с D-фруктозой находятся ендиол, D-глюкоза и D-манноза.

Взаимопревращения в щелочном растворе между альдозами, эпимерами по С-2, называют эпимеризацией.

Получение гликаровых кислот.

При действии разбавленной азотной кислоты окисляется оба конца углеродного скелета альдоз и образуются гликаровые кислоты.

При образовании гликаровых кислот, как и в случае глицитов, происходит «уравнивание» функциональных групп на концах цепи и из некоторых альдоз образуются мезо-соединения.

Окисление кетоз азотной кислотой протекает с расщеплением С-С связей.

Окисление виц-диольной группировки.

Моносахариды содержат виц-диольную группировку, которая претерпевает окислительное расщепление под действием иодной кислоты или тетраацетата свинца.

HOCH2(CHOH)nCHO + (n+1) HIO4 ® (n+1) HCOOH + HCHO + (n+1) HIO3

Реакция протекает количественно. По составу продуктов и количеству израсходованной иодной кислоты получают ценную информацию о строение моносахаридов и их производных.

Получение гликозидов.

Циклические формы моносахаридов содержат несколько групп ОН, одна из которых – гликозидный (полуацетальный) гидроксил, отличается повышенной склонностью к реакциям нуклеофильного замещения.

Известно, что в присутствии кислотных катализаторов полуацетали реагируют со спиртами. При этом происходит нуклеофильное замещение полуацетального гидроксила и образуются полные ацетали.

Аналогично реагирует гликозидный гидроксил в альдозах и кетозах. Спиртовые ОН группы при этом не затрагиваются. Продукты замещения гликозидного гидроксила называют гликозидами (гликопиранозидами или гликофуранозидами в зависимости от размера цикла). Например, при пропускании через раствор D-глюкозы в метаноле газообразного HCl образуется смесь метилглюкозидов, соответствующих разным таутомерным формам D-глюкозы (двум пиранозным и двум фуранозным). В условиях термодинамического контроля в реакционной смеси преобладают более стабильные метилпиранозиды.

Метил-a-D-глюкопиранозид обладает большей термодинамической стабильностью, чем b-аномер (аномерный эффект) и поэтому образуется в большем количестве. Гликозиды существуют только в циклической форме, поэтому a- и b-аномеры гликозидов не могут спонтанно переходить друг в друга в результате таутомерных превращений. Гликозиды не имеют свободной альдегидной группы и являются невосстанавливающими сахарами.

Как полные ацетали гликозиды гидролизуются в условиях кислотного катализа и устойчивы в разбавленных растворах щелочей. Механизм кислотного гидролиза включает протонирование гликозидного кислорода, расщепление гликозидной С-О связи с образованием гликозил-катиона, который затем атакуется молекулой воды.

Расщепление гликозидной связи важно с биологической точки зрения, поскольку многие природные соединения являются гликозидами. Широко используется ферментативный гидролиз гликозидов, преимущество которого заключается в его специфичности. Определенные ферменты гидролизуют только a- или только b-гликозидные связи., что может быть использовано для установления  конфигурации гликозидной связи.

Молекулу гликозида рассматривают как состоящую из двух частей – сахарной части и агликона:

В качестве агликона в природных гликозидах могут выступать спирты, фенолы, стероиды, сами моносахариды. Перечисленные агликоны связаны с сахарной частью через атом кислорода,  поэтому такие гликозиды называют О-гликозидами. В природе широко распространены N-гликозиды, в которых агликонами являются азотистые основания. К ним относятся нуклеозиды – структурные единицы нуклеиновых кислот.

Получение простых эфиров.

Метиловые эфиры по спиртовым группам ОН получают действием на моносахариды диметилсульфата в водном растворе щелочи или метилиодида в присутствии оксида серебра. Эти методы являются модификациями синтеза Вильямсона. При этом в реакцию вступает и гликозидный гидроксил. Простые эфиры по спиртовым группа устойчивы к гидролизу, в то время как гликозидная связь легко расщепляется в кислой среде.

Приведенная последовательность реакций (метилирование, затем гидролиз) используется для определения размера цикла в моносахаридах. Неметилированной остается группа ОН, которая участвовала в образовании циклического полуацеталя. Окисление образовавшейся тетраметил-D-глюкозы азотной кислотой в жестких условиях дает сначала кетокислоту, а затем триметоксиглутаровую и диметоксиянтарную кислоты.

Состав продуктов окисления указывает на то, что кетогруппа, а, следовательно, и свободная гидроксигруппа находились в положении 5. Это означает, что цикл был пиранозным.

Получение сложных эфиров.

Гидроксильные группы моносахаридов легко этерифицируются действием ангидриридов и хлорангидридов карбоновых кислот. Чаще всего используют ацетилирование уксусным ангидридом в присутствии кислотного (H2SO4, ZnCl2) или основного (пиридин, СH3COONa) катализатора.

Соотношение a- и b-аномеров зависит от условий проведения реакции. В условиях термодинамического контроля (высокая температура, кислотный катализатор) преобладает более стабильный a-аномер (аномерный эффект). В условиях кинетического контроля (температура ниже 00С, основной катализатор) преимущественно образуется b-аномер, поскольку экваториальная группа ОН ацилируется с большей скоростью, чем аксиальная.

Для удаления ацетильных групп используют переэтерификацию действием метилата натрия в метаноле.

Получение производных по карбонильной группе. Образование озазонов.

Моносахариды вступают во многие реакции нуклеофильного присоединения по карбонильной группе, характерные для альдегидов и кетонов: присоединяют HCN, NH2OH, фенилгидразин. При действии избытка фенилгидразина образуются озазоны.

Эпимеры по С-2, например, D-глюкоза и D-манноза, дают один и тот же озазон, что используется для установления стереохимической конфигурации моносахаридов. Кетозы также образуют озазоны. D-фруктоза дает такой же озазон, что и D-глюкоза.

Озазоны – желтые кристаллические вещества, используются для идентификации сахаров.

Синтез моносахаридов.

Полный синтез моносахаридов – очень сложная задача, так как при его осуществлении возникает необходимость разделения оптических изомеров. Обычно доступные из природных источников моносахариды используют для получения менее доступных сахаров. Для этого применяют методы деградации и наращивания цепи, изменение конфигурации хиральных центров. Методы наращивания и деградации цепи, позволяющие производить переходы триоза®тетроза®пентоза®гексоза и обратные превращения, имеют большое значение для установления конфигурации моносахаридов.

Наращивание цепи по методу Килиани-Фишера.

Метод включает присоединение HCN по карбонильной группе, гидролиз циангидринов до гликоновых кислот, лактонизацию образующейся кислоты, восстановление лактонов до альдоз. В результате образуются две альдозыэпимеры по C-2, так как на стадии образования циангидрина появляется новый хиральный центр и образуются два диастереомера.

Деградация по Волю

Образование оксимов и их последующие превращения позволяют укоротить цепь моносахарида на один атом углерода. Процесс упрощенно может быть представлен следующей схемой.

При этом из эпимеров по С-2 образуются одинаковые альдозы (из D-глюкозы и D-маннозыD-арабиноза).

Деградация по Руффу.

Метод состоит в окислении альдозы в гликоновую кислоту с последующим окислительным декарбоксилированием.

Дисахариды.

Строение.

Дисахариды состоят из  двух моносахаридных остатков, связанных гликозидной связью. Их можно рассматривать как О-гликозиды, в которых агликоном является остаток моносахарида.

Возможно два варианта образования гликозидной связи:

1)     за счет гликозидного гидроксила одного моносахарида и спиртового гидроксила другого моносахарида;

2)     за счет гликозидных гидроксилов обоих моносахаридов.

Дисахарид, образованный первым способом, содержит свободный гликозидный гидроксил, сохраняет способность к цикло-оксо-таутомерии и обладает восстанавливающими свойствами.

В дисахариде, образованном вторым способом, нет свободного гликозидного гидроксила. Такой дисахарид не способен к цикло-оксо-таутомерии и является невосстанавливающим.

В природе в свободном виде встречается незначительное число дисахаридов. Важнейшими из них являются мальтоза, целлобиоза, лактоза и сахароза.

Мальтоза содержится в солоде и образуется при неполном гидролизе крахмала. Молекула мальтозы состоит из двух остатков D-глюкозы в пиранозной форме. Гликозидная связь между ними образована за счет гликозидного гидроксила в a-конфигурации одного моносахарида и гидроксильной группы в положении 4 другого моносахарида.

Мальтоза – это восстанавливающий дисахарид. Она способна к таутомерии и имеет a- и b-аномеры.

Целлобиоза – продукт неполного гидролиза целлюлозы. Молекула целлобиозы состоит из двух остатков D-глюкозы, связанных b-1,4-гликозидной связью. Целлобиоза – восстанавливающий дисахарид.

Различие между мальтозой и целлобиозой состоит в конфигурации гликозидной связи, что отражается на их конформационном строении. Гликозидная связь в мальтозе имеет аксиальное, в целлобиозе – экваториальное положение. Конформационное строение этих дисахаридов служит первопричиной линейного строения макромолекул целлюлозы и спиралеобразного строения амилозы (крахмал), структурными элементами которых они являются.

Лактоза содержится в молоке (4-5%). Молекула лактозы состоит из остатков D-галактозы и D-глюкозы, связанных b-1,4-гликозидной связью. Лактоза – восстанавливающий дисахарид

Сахароза содержится в сахарном тростнике, сахарной свекле, соках растений и плодах. Она состоит из остатков D-глюкозы и D-фруктозы, которые связаны за счет гликозидных гидроксилов. В составе сахарозы D-глюкоза находится в пиранозной, а D-фруктоза – в фуранозной форме. Сахароза – невосстанавливающий дисахарид.

Химические свойства.

Дисахариды вступают в большинство реакций, характерных для моносахаридов: образуют простые и сложные эфиры, гликозиды, производные по карбонильной группе. Восстанавливающие дисахариды окисляются до гликобионовых кислот. Гликозидная связь в дисахаридах расщепляется под действием водных растворов кислот и ферментов. В разбавленных растворах щелочей дисахариды устойчивы. Ферменты действуют селективно, расщепляя только a- или только b-гликозидную связь.

Последовательность реакций – окисление, метилирование, гидролиз, позволяет установить строение дисахарида.

Окисление дает возможность определить, остаток какого моносахарида находится на восстанавливающем конце. Метилирование и гидролиз дают информацию о положении гликозидной связи и размерах цикла моносахаридных звеньев. Конфигурация гликозидной связи (a или b) может быть определена с помощью ферментативного гидролиза.

Полисахариды.

Полисахариды – полимеры, построенные из моносахаридных остатков, связанных гликозидными связями. Полисахариды могут иметь линейное или разветвленное строение. Полисахариды, состоящие их одинаковых моносахаридных остатков, называют гомополисахаридами, из остатков разных моносахаридов – гетерополисахаридами.

Крахмал – полисахарид растительного происхождения. Его основная биологическая функция – запасное вещество растений. Крахмал представляет собой смесь двух полисахаридов – амилозы (10-20%) и амилопектина (80-90%)

Амилоза – линейный гомополисахарид, состоящий из остатков D-глюкопиранозы, связанных a-1,4-гликозидными связями. Структурным элементом амилозы является дисахарид мальтоза.

Цепь амилозы включает от 200 до 1000 моносахаридных единиц. Вследствие аксиального положения гликозидной связи макромолекула  амилозы свернута в спираль.

Амилопектин – разветвленный гомополисахарид, построенный из остатков D-глюкопиранозы, которые связаны в основной цепи a-1,4-гликозидными, а в местах разветвлений - a-1,6-гликозидными связями. Разветвления расположены через каждые 20-25 моносахаридных остатков.

Крахмал набухает и растворяется в воде, образуя вязкие растворы (гели). Химические свойства крахмала аналогичны свойствам моно- и дисахаридов. Крахмал гидролизуется под действием кислот (но не щелочей) и фермента амилазы. Конечным продуктом гидролиза крахмала является D-глюкоза.

(C6H10O5)n ® (C6H10O5)m ® C12H22O11 ® C6H12O6

крахмал       декстрины       мальтоза       D-глюкоза

n>m

За счет спиралеобразной конформации амилоза способна образовывать соединения включения с молекулярным иодом. Комплексы крахмала с иодом имеют интенсивную синюю окраску. Реакция используется как качественная на иод и крахмал.

Целлюлоза – самый распространенный растительный полисахарид. Выполняет функцию опорного материала растений. Целлюлоза – линейный гомополисахарид, построенный из остатков D-глюкопиранозы, связанных b-1,4-гликозидными связями. Структурным элементом целлюлозы является целлобиоза.

Гликозидная связь в целлюлозе имеет экваториальное положение. Это определяет линейную конформацию целлюлозы, которая стабилизирована водородными связями.

Макромолекулы целлюлозы образуют волокна. В отличие от крахмала целлюлоза в воде не набухает и не растворяется. Для перевода целлюлозы в растворимую форму необходима её химическая модификация.

Целлюлоза набухает в растворах щелочей, что связано с образованием алкоксидов.

[C6H7O2(OH)3]x + x NaOH ® [C6H7O2(OH)2O-Na+]x + x H2O

Растворение целлюлозы в реактиве Щвейцера [Cu(NH3)4](OH)2 происходит за счет образования комплексных алкоксидов, что характерно для соединений, содержащих виц-диольные группировки. При подкислении раствора выделяется целлюлоза в другой модификации, которую используют для получения искусственного шелка.

Целлюлоза растворяется в щелочах в присутствии CS2, образуя ксантогенаты.

[C6H7O2(OH)3]x + x NaOH + x CS2 ® [C6H7O2(OH)2O-C-S- Na+]x + x H2O

При подкислении раствора выделяется целлюлоза, которую используют для изготовления вискозного шелка и целлофана.

При действии уксусного ангидрида в присутствии серной кислоты образуется триацетилцеллюлоза.

[C6H7O2(OH)3]x + 3x (CH3CO)2O ® [C6H7O2(OCOCH3)3]x + 3x CH3COOH

Ацетилцеллюлоза растворяется в органических растворителях. Её используют для изготовления ацетатного шелка и негорючей кино- и фотопленки.

Взаимодействием целлюлозы с нитрующей смесью получают нитраты целлюлозы.

[C6H7O2(OH)3]x [C6H7O2(OH)2ONO2]x

[C6H7O2(OH)(ONO2)2]x [C6H7O2(ONO2)3]x

Нитроцеллюлоза растворима в органических растворителях. Продукты с малым содержанием азота используют для изготовления лаков. Динитрат целлюлозы используют для изготовления пленок. Нитроцеллюлозу с максимальным содержанием азота называют пироксилином и применяют для изготовления бездымного пороха.

Hosted by uCoz