Лекция №30

ПРОСТЫЕ ЭФИРЫ

План

    1. Классификация и номенклатура простых эфиров.
    2. Способы получения диалкиловых эфиров, их физические и химические свойства.
    3. Циклические эфиры.
    4. Оксираны и краун – эфиры.


Простые эфиры можно рассматривать как производные спиртов, в которых атом водорода гидроксильной группы замещен на углеводородный радикал.

По характеру атомов углерода, связанных с кислородным атомом, простые эфиры можно подразделить на следующие типы:

1. Эфиры, содержащие связи С(sp3)¾O.

К ним относятся эфиры структуры ROR/и циклические эфиры.


2. Эфиры содержащие связь С(sp2)¾O

К ним относятся


3. Эфиры, содержащие связь С
(sp)¾O

RCº C-OR/

Диалкиловые эфиры

Диалкиловые эфиры являются наиболее важными представителями класса простых эфиров. Их эмпирическая формула СnH2n + 2O или СnH2n + 1OCmH2m + 1.

Изомерия и номенклатура

Наименование диалкиловых эфиров по рациональной номенклатуре образуют путем перечисления заместителей и прибавления слова "эфир".

Номенклатура IUPAC рассматривает эфир как производное углеводорода, замещенного на алкоксигруппу, причем в основе названия лежит наиболее длинная углеводородная цепь.


 
 

Способы получения диалкиловых эфиров

  1. Синтез Вильямсона.


Можно видеть, что этот способ удобен для получения несимметричных эфиров.
 

  1. Межмолекулярная дегидратация спиртов.


Реакция эффективна при получении симметричных эфиров. Следует иметь в виду, что при повышении температуры будет прогрессировать реакция нуклефильного отщепления, особенно если обьектом дегидратации являются разветвленные спирты (вторичные и третичные)
 

  1. Алкилирование спиртов алкенами.


Функция кислоты – катализатора заключается в генерировании карбкатионов, которые эффективно атакуются нуклеофилом – спиртом:

Эффективность реакции определяется стабильностью карбкатиона, поэтому соблюдается следующий ряд реакционной способности алкенов.

  1. Алкоксимеркурирование алкенов.

или суммарно


 
 

Физические свойства и строение

Простые эфиры являются бесцветными жидкостями (кроме диметилового эфира) со своеобразным запахом и низкими температурами кипения, что свидетельствует о слабом межмолекулярном взаимодействии. Это является показателем низкой полярности диалкиловых эфиров и отсутствия (в отличие от спиртов) предпосылок для образования водородных связей. В отличие от спиртов эфиры обладают более сильными электронодонорными свойствами, о чем свидетельствует значение потенциалов ионизации. Увеличение электронодонорных свойств обьясняется положительным индуктивным эффектом алкильных групп. Валентный угол приближается к тетраэдрическому и равен109–1120.

Химические свойства

  1. Основность


 

 

Основность простых эфиров проявляется в их взаимодействии с кислотами Бренстеда и Льюиса. С Бренстедовскими кислотами умеренной силы взаимодействие осуществляется посредством водородной связи.

В случае сильных Бренстедовских кислот происходит протонирование эфиров и образование оксониевых кислот.

Простые эфиры – слабые основания и начинают протонироваться в ощутимых количествах в растворе 30 - 40%-ной серной кислоты.

С кислотами Льюиса диалкиловые эфиры образуют стабильные продукты присоединения – эфираты.

В этих соединениях образуется донорно–акцепторная связь за счет неподеленной пары атома кислорода.

Способность простых эфиров сольватировать катионы различных металлов имеет исключительное значение для получения металоорганических соединений в растворах диалкиловых эфиров или тетрагидрофурана.
 

  1. Реакции при a - углеродном атоме диалкиловых эфиров.


 

 
 
 

Простые эфиры могут вступать в реакции свободнорадикального хлорирования и автоокисления, причем обьектом этих реакций является a - углеродный атом эфиров.

Основанием для такого направления является стабильность a - алкилалкоксирадикалов,

обуслoвливающая энергетическую выгодность реакции инициирования (в случае автоокисления) и развития цепей (в случае автоокисления и хлорирования)


 
 

где Х. – радикал цепи при хлорировании (Cl.) и автоокислении

Образующиеся в результате автоокисления гидропероксиды являются взрывчатыми веществами. Они могут образовываться в эфирах при хранении в условиях доступа воздуха и в прозрачных бутылках. Поэтому эфиры после длительного хранения перед употреблением подлежат обработке с целью разрушения гидропероксидов.
 

  1. Реакции расщепления С ¾ О – связи

Эфиры расщепляются под действием сильных кислот, например, иодоводородной, бромоводородной, суперкислот:

При действии суперкислот на эфиры при низких температуах генерируются карбкатионы, которые могут претерпевать различные перегруппировки и распад до алкенов.

При этом легче расщепляются простые эфиры, которые содержат разветвленные группы, так как в результате протонирования образуются более устойчивые карбкатионы.

Алкилвиниловые эфиры.

Методы получения

  1. Винилирование спиртов



 

  1. Дегидрогалогенирование a - галогендиалкиловых эфиров

Химические свойства алкилвиниловых эфиров

Основными реакциями алкилвиниловых эфиров являются:

  1. Электрофильное присоединение


Можно показать, что порядок присоединения HНal и других протонных кислот определяется стабильностью промежуточных карбкатионов.
 

  1. Полимеризация

 Эти реакции могут осуществляться по свободнорадикальному или карбкатионному механизмам. В первом случае в качестве инициаторов используют органические пероксиды или азобисизобутилонитрил, во втором - реакции катализируются протонными кислотами, причем во избежание электрофильного присоединения кислоты - катализатора НХ к двойной связи, кислоте должен соответствовать слабый нуклефил Х.

Циклические эфиры

Циклические эфиры – производные алкандиолов, в которых эфирная связь образована внутримолекулярно.

Циклические эфиры подразделяются на несколько групп в зависимости от величины цикла и числа кислородных атомов в цикле. Их часто называют оксидами.

В этом плане различают:


 
 

Эпоксиды (оксираны)

Основу названия этих соединений составляет наименование углеводорода, а на присутствие кислородного мостика указывает приставка "эпокси". Для простейших соединений сохраняется название этиленоксид и пропиленоксид. Используется также номенклатура гетероциклических соединений "оксираны". Например,

Методы получения

  1. Дегидрогалогенирование галогеналканолов (галогенгидринов)


  1. Окисление (эпоксидирование) алкенов (реакция Прилежаева)

В качестве катализаторов используют кислые соли вольфрамовой кислоты (Н2О2) и соединений молибдена (ROOH). Реакцию можно осуществлять некаталитически, если в качестве эпоксидирующего агента использовать органические надкислоты.

Первый член гомологического ряда этиленоксид, в промышленности получают парофазным окислением кислородом или воздухом.

Химические свойства

Химическое поведение оксиранов определяется тремя факторами: поляризацией связей С ¾ О с образованием частичного положительного заряда на углероде оксидного цикла, электронодонорными свойствами атома кислорода и напряженностью оксидного цикла. Поэтому наиболее характерными реакциями оксиранов являются реакции нуклеофильного присоединения по положительно заряженному углероду цикла, сопровождающиеся разрывом связи С¾ О цикла, облегчаемым протонированием кислородного атома под действием протонодонорного агента.

Совместное действие этих факторов отчетливо проявляется в некаталитической реакции этиленоксида с водой

или суммарно:

Эта реакция протекает медленно, поскольку вода является слабым протонодонорным агентом. Для ускорения этой реакции необходимо использовать высокую температуру и давление.

Другие более сильные нуклеофилы (NH3, RNH2, RMgX) реагируют более легко.

Приведенные реакции имеют важное препаративное и промышленное значение. Получаемый гидратацией этилена этиленгликоль являются антифризом и исходным веществом для синтеза лавсана, этаноламины используются в качестве абсорбентов для извлечения кислых примесей из газов. Оксиэтилирование реактивов Гриньяра – важный способ увеличения длины углеродной цепи органических соединений на два углеродных атома.

Если в реакциях нуклеофильного замещения оксиранов участвуют нуклеофилы HNu, обладающие слабой нуклефильной активностью и слабой кислотностью (H2O, H2S, RSN), то для эффективного проведения этих реакций используют кислотный или основной катализ. Например, кислотно–каталитическая реакция со спиртами связана с эффективным протонированием оксирана, приводящим к увеличению положительного заряда на его углеродных атомах и делающим атаку нуклеофила более эффективной:

Или суммарно

Образующиеся в этих реакциях целлозольвы и карбитолы – универсальные растворители.

При основном катализе под действием основания продуцируется более эффективный нуклеофил, например, в реакциях с ROH, RSH, H2S, HCN, эффективно атакующий углеродный атом оксиранового цикла:

или суммарно:

Краун – эфиры

Краун-эфиры - макроциклические полиэфиры с четырьмя и более кислородными атомами в цикле. В большинстве случаев они являются производными этиленгликоля. В названии соединений цифра в квадратных скобках указывает число атомов в макроцикле, а вторая - число кислородных атомов.

Краун - эфиры получают по реакции Вильямсона из соответствующих гликолятов и дигалогеналканов:

или галогенов b , b ’ – дигалогеналкиловых эфиров.

Самое важное свойство краун–эфиров – образование комплексов с катионами металлов.

Ион металла находится в полости макроцикла и прочно удерживается благодаря донорно–акцепторным связям кислород – металл, причем чем ближе ионный диаметр металла к диаметру полости, тем устойчивее комплекс.

Краун – эфиры используют для улучшения растворимости неорганических солей в органических растворителях, в качестве межфазных катализаторов, для генерирования несольватированных анионов в неорганических растворителях. Благодаря этому можно ускорить реакцию нуклеофильного замещения этими анионами. Соединения типа краун – эфиров играют большую роль в биологических системах – они осуществляют транспорт ионов через биологические мембраны

Hosted by uCoz