Кето-енольная таутомерия эфиров 1,3-кетокислот

и реакции таутомерных форм.

Эфиры 1,3-кетокислот по своему химическому поведению близки к 1,3-дикетонам. Однако их кислотность ниже. Для них характерна кетоенольная таутомерия.

Как и в случае 1,3-дикетонов таутомерное равновесие чувствительно к сольватирующей способности реакционной среды. Так, в растворе метанола образуется 8,7% енола.

Анионы эфиров 1,3-кетокислот представляют собой сопряженную систему с выровненными связями и делокализованным отрицательным зарядом. Они содержат несколько реакционных центров. Их соли в растворах существуют в виде ионных пар. С ионами тяжелых металлов они образуют внутренние комплексы (хелаты). Соли 1,3-кетокислот подобны солям 1,3-дикетонов. Они легко алкилируются и ацилируются

Алкилирование и ацилирование происходит главным образом у углеродного атома, т.к. атомы кислорода в значительной степени блокированы ионом металла.

Если в полученных продуктах алкилирования или ацилирования при атоме углерода в положении 2 содержится еще один кислый атом водорода открывается дополнительная возможность введения в это положение алкильных или ацильных групп, например

Последующий гидролиз и нагревание приводит к синтезу 1,3-кетокарбоновой кислоты и соответствующего кетона

Эти реакции представляют собой важных синтетический метод получения кетонов различных структур.

Ацилоиновая конденсация

В отличие от конденсации Кляйзена в ацилоиновой конденсации ключевую роль играют сложноэфирные группы. Суммарно ацилоиновая конденсация может быть представлена схемой:

Механизм ацилоиновой конденсации может быть представлен последовательностью стадий:

Реакция представляет собой важнейший метод образования углерод-углеродной связи. Она имеет большое значение для синтеза соединений с большими циклами.


 
 

АМИДЫ КАРБОНОВЫХ КИСЛОТ

Эти соединения следует рассматривать как результат замещения гидрокси-группы в карбоновой кислоте на амино-группу

Методы получения амидов:

    1. Ацилирование аммиака и аминов.


    1. Дегидратация аммониевых солей карбоновых кислот


    1. Гидролиз нитрилов карбоновых кислот


    1. Перегруппировка оксимов кетонов по Бекману

Обычно к атому азота мигрирует та группа, которая находится в транс-положении к ОН-группе.

Механизм перегруппировки Бекмана:


 
 

Синтез лактамов - циклических амидов.

  1. Перегруппировка циклических амидов – лактамов


  1. Реакция Байера-Виллигера


  1. Циклизация аминокислот (n³ 3)

Физические свойства амидов. Строение амидной группы.

Амиды представляют собой бесцветные кристаллические вещества или жидкости, растворяющиеся в органических растворителях. Амиды, в молекулах которых имеются связи N-H, ассоциированы вследствие образования межмолекулярных водородных связей и имеют более высокие температуры кипения.

В молекулах амидов имеет место значительное сопряжение неподеленной парой электронов азота и p -электронной системой двойной связи С=О. Это приводит к образованию дополнительной поляризации связей в амидной группе и наличие электрофильных реакционных центров на ацильном и алкильных углеродных атомах и отрицательного - на карбонильном кислороде.

Химические свойства амидов.

    1. Реакции нуклеофильного замещения.


Примером может служить гидролиз. В нейтральной среде гидролиз протекает медленно. Поэтому реакцию ведут в присутствии минеральной кислоты либо основания, которые не только ускоряют ее, но и участвуют как реагенты.

Активация молекулы амида кислотой связана с ее протонированием и увеличением положительного заряда на карбонильном углероде, который становится более восприимчивым к последующей нуклеофильной атаке:

В случае щелочного гидролиза в качестве нуклеофила вместо воды выступает более реакционно способный гидроксил-анион, который эффективно осуществляет нуклеофильную атаку на кaрбонильный углерод:


 
 

    1. Реакция восстановления.


    1. Реакция дегидратации.


    1. Расщепление по Гофману.


Механизм реакции

    1. Перегруппировка Курциуса характерна для азидов карбоновых кислот, которые ведут себя подобно амидам в расщеплении по Гофману.


    1. Взаимодействие формамидов с реактивом Гриньяра (реакция Буво)

Продуктами этой реакции являются альдeгид и третичный амин.
 

 

НИТРИЛЫ КАРБОНОВЫХ КИСЛОТ

Общая формула нитрилов R-Cº N или CnH2n+1CN.

Методы получения нитрилов.

    1. Дегидратация амидов карбоновых кислот с помощью водоотнимающих агентов.


На практике в последнем случае пропускают над катализатором смесь карбоновой кислоты с аммиаком. В этом процессе совмещается образование амида и его дегидратация.

    1. Нуклеофильное замещение галогена в галогеналканах на циaнид-анион.


    1. Дегидратация альдоксимов.

Механизм реакции:


 
 

Химические свойства нитрилов.

Циано-группа характеризуется высокой степенью поляризации, следствием которой является образование частичного положительного заряда на углероде и отрицательного заряда – на азоте

Это обусловливает, с одной стороны, восприимчивость углеродного центра к нуклеофильной атаке, с другой – основность атома азота.


Нитрилы легко реагируют с сильными анионными нуклеофильными реагентами (карбанионами, амидами металлов, щелочами, алкоголятами, тиоалкоголятами)

Примером может служить щелочной гидролиз нитрилов:

Дальнейший гидролиз амида приводит к образованию солей карбоновых кислот.

Таким образом суммарное уравнение щелочного гидролиза нитрилов можно представить как

R-Cº N + H2O + NaOH ® RCOONa + NH3

Реакции нитрилов со слабыми нуклеофилами (водой, спиртами) протекает крайне медленно. Для эффективного проведения этих реакций используют кислотный катализ. Активация молекулы нитрила в этом случае осуществляется за счет образования водородной связи между кислотой – катализатором и атомом азота и, как следствие, увеличение положительного заряда на нитрильном углеродном атоме.

На последующей стадии гидролиза кислота НХ выступает одновременно как ускоритель реакции и реагент.

Таким образом, полный кислотный гидролиз нитрилов описывается уравнением:

R-Cº N + 2H2O + HX ® RCOOH + NH4X

Если в качестве реагента использовать водно-спиртовые среды, то можно осуществлять синтез сложных эфиров

R-Cº N + R'OH + H2O + HX ® RCOOR' + NH4X


Реакции гидрирования нитрилов можно подразделить на две группы:

а) каталитическое гидрирование

В качестве катализаторов этих реакций используют металлические Pt, Pd, Ni.

б) реагентное гидрирование

В качестве реагентов этих реакциях используют LiAlH4, NaBH4.

Механизм реакции:

RCº N + LiAlH4 ® RCH=N-Li + AlH3

RCH=N-Li + HX ® RCH=NH + LiX

Механизм второй стадии:


Эта реакция является примером присоединения атома углерода к гетероатому (азоту).


Реакция протекает по карбкатионному механизму:

В реакцию вступают только спирты, дающие достаточно стабильные карбкатионы (вторичные, третичные, бензильные и т.п.). Первичные спирты не реагируют. Карбкатионы не обязательно следует генерировать из спирта, его можно получать протонированием алкенов.

Hosted by uCoz